2.1 Доступные технологии и их описание

"ИТС 19-2016. Информационно-технический справочник по наилучшим доступным технологиям. Производство твердых и других неорганических химических веществ" (утв. Приказом Росстандарта от 15.12.2016 N 1883)

Документ утратил силу или отменен

2.1 Доступные технологии и их описание

Несмотря на то, что получение фторида алюминия из КФВК становится все более важным, "сухой" процесс все же доминирует в мире. Порядка 80% фторида алюминия производится по этому способу. В России AlF3 по этому способу не производится.

2.1.1 "Сухой" способ производства фторида алюминия

Фторид алюминия получают обработкой активированного Al2O3 безводным фтороводородом в реакторе кипящего слоя. Сырьем для получения безводного фтороводорода служит флюорит (плавиковый шпат), кислотного качества (т.е. с содержанием CaF2 свыше 97% масс.), серная кислота (H2SO4) и гидроксид алюминия (Al(OH)3).

В основе процесса лежат следующие реакции:

(1)

(2)

(3)

Блок-схема процесса приведена на рисунке 2.1.

Рисунок 2.1 - Блок-схема процесса получения фторида алюминия

"сухим" способом

2.1.2 Получение фторида алюминия при переработке КФВК

"Легкий" фторид алюминия получают при нейтрализации раствора КФВК гидроксидом алюминия ("гидрохимические" способы). Производства "легкого" фторида алюминия часто находятся на одной площадке с производствами фосфорсодержащих удобрений, т.к. источником дешевого фтора при этом является КФВК - побочный продукт получения упаренной экстракционной фосфорной кислоты (см. ИТС по наилучшим доступным технологиям "Производство аммиака, минеральных удобрений и неорганических кислот, 2015 г.). При использовании КФВК в качестве фторсодержащего сырья, фторид алюминия получают следующими способами:

А) с осаждением тригидрата фторида алюминия

Б) с осаждением аммонийного криолита

В настоящее время в России "легкий" AlF3 из КФВК производится по способу А) через осаждение тригидрата фторида алюминия (далее ТФА). До недавнего времени в АО "ВМУ" фторид алюминия выпускался по способу Б), но в 2014 году производство было остановлено.

Рассмотрим способ А) подробнее. В основе технологии лежит свойство фторида алюминия образовывать пересыщенный раствор с длительным индукционным периодом кристаллизации, что позволяет отфильтровать кремнегель из реакционной массы. Из пересыщенного водного раствора фторид алюминия при температуре 85 - 95 °C кристаллизуется в виде тригидрата AlF3·3H2O, который отфильтровывается и прокаливается сначала при температуре 300 °C до полугидрата, а затем при 550 °C до безводного фторида алюминия.

Блок-схема производства фторида алюминия из КФВК через осаждение ТФА показана на рисунке 2.2.

Рисунок 2.2 - Блок-схема процесса получения

"легкого" фторида алюминия из КФВК

2.1.2.1 Нейтрализация КФВК и удаление SiO2

На первой стадии технологического процесса нагревают КФВК и загружают в реактор, затем туда подают гидроксид алюминия. Реакция является экзотермической, вследствие чего реакционная смесь разогревается до температуры 95 - 100 °C. В результате реакции образуется водный раствор фторида алюминия и твердый аморфный SiO2. Кремнегель выделяют из раствора путем фильтрования, также промывают водой. Существенным отличием и особенностью технологии, используемой в России, является то, что гидроксид алюминия применяется в виде влажного порошка (что обусловлено условиями поставки). Для равномерной подачи в процесс его суспендируют водой.

Нагрев КФВК производится в подогревателе, который представляет собой цилиндрическую емкость, оборудованную барботерами острого пара. Нагрев производится в периодическом режиме.

Реактор нейтрализатор представляет собой цилиндрическую емкость с коническим днищем, которая оборудована мешалкой лопастного типа. Реактор работает в периодическом режиме. Степень нейтрализации КФВК определяется по электропроводимости раствора.

Разделение реакционной смеси осуществляется на ленточном вакуум-фильтре со сходящим полотном. Данное оборудование позволяет эффективно промывать осадок кремнегеля, снижая потери целевого продукта.

2.1.2.2 Кристаллизация ТФА

После выделения аморфного SiO2 пересыщенный метастабильный раствор фторида алюминия помещают в кристаллизатор, в котором происходит кристаллизация твердого ТФА (AlF3·3H2O), который затем также отделяют на фильтре. Жидкую фазу (маточный раствор) направляют на абсорбцию отходящих газов, а затем в производство экстракционной фосфорной кислоты.

Реактор кристаллизации представляет собой цилиндрическую емкость с коническим днищем, оборудованную трехуровневым импеллером-мешалкой. Подогрев раствора осуществляется при помощи барботажа острого пара при помощи барботера.

Фильтрование ТФА проводят при помощи ленточного вакуум-фильтра со сходящим полотном.

2.1.2.3 Сушка и прокалка ТФА

Влажные кристаллы ТФА направляются на сушку-прокалку во вращающуюся барабанную печь, где происходит прогрев материала и удаление кристаллизационной влаги.

Отходящие газы, содержащие пыль фторида алюминия, последовательно проходят чистку в циклонах, рукавном фильтре, абсорбере и направляются в атмосферу через санитарную трубу.

Для сушки и прокаливания кристаллов ТФА могут применяться барабанные печи 2-х конструкций. Противоточная барабанная печь конвективного действия и противоточная барабанная печь конвективно-кондуктивного действия.

Конвективная печь представляет собой противоточный вращающийся барабан, оборудованный подпорными кольцами для задержки продукта и увеличения времени пребывания его в печи.

Конвективно-кондуктивная печь представляет собой противоточный вращающийся барабан, в котором продукт сначала проходит конвективную зону сушки, оборудованную подъемно-лопастной насадкой, затем продукт попадает в кондуктивную зону, где прогрев продукта происходит через стенку.

Для рекуперации тепла продукта может использоваться вращающийся трубчатый холодильник. Охлаждение продукта производится атмосферным воздухом, который после прохождения теплообменника подается на горение природного газа и разбавление топочных газов.

Для рекуперации тепла отходящих газов может быть использован кожухотрубчатый теплообменник. Охлаждение отходящих газов осуществляется атмосферным воздухом, подогретый в теплообменнике воздух направляется на горение природного газа и разбавление топочных газов.

2.1.2.4 Очистка отходящих газов

Газы, отходящие от стадии сушки-прокалки, содержащие пыль продукта и газообразные фтористые соединения, проходят стадию очистки перед выбросом в атмосферу.

На первой стадии очистки производится очистка от пыли с использованием групповых циклонов. На данной стадии также применяется рукавный фильтр. Пыль продукта возвращается на стадию сушки-прокалки.

На второй стадии обеспыленные газы проходят абсорбционную очистку в абсорбере. Абсорбер представляет собой цилиндрический аппарат, орошаемый водным раствором фторида алюминия. Для интенсификации абсорбции в аппарате устанавливаются 2 провальные решетки. В расширенной части абсорбера (брызгоуловителе) может быть установлена ступень АПС с подпиткой водой.

Использование 2-х ступенчатой системы очистки позволяет достигать высокой степени очистки газов от загрязняющих веществ и максимально возвращать целевой продукт в технологический процесс, экономя сырьевые ресурсы.

2.1.2.5 Очистка аспирационных газов

Газы, отходящие от емкостного и фильтровального оборудования, содержащие газообразные фтористые соединения, подвергаются абсорбционной очистке. Для этого используется абсорбер, орошаемый слабым раствором кремнефтороводородной кислоты и водой. Абсорбер представляет собой цилиндрический аппарат. Для интенсификации абсорбции в аппарате устанавливается провальная решетка. В расширенной части абсорбера (брызгоуловителе) может быть установлена ступень АПС с подпиткой водой.